

LeapMax Gestural Interaction System

George Cooper Jones Arts, Media, and Engineering Arizona State University

ARIZONA STATE UNIVERSITY

HELLO!

I am G. Cooper Jones

Undergraduate Digital Culture w/ Media Processing Arizona State University gcjones1@asu.edu

ACKNOWLEDGEMENTS

Primary Director: Dr. Lauren Hayes

Secondary Director: Dr. Byron Lahey

Background

Max, Leap Motion, and Data Gloves

Max/MSP

Visual Programming Language for Music and Multimedia

MAX/MSP

Visual programming language first developed by Miller Puckette in 1985

Max is especially suited for this project for several reasons:

- very accessible
- low latency live data and audio
- highly modular

Leap Motion

Low latency, high accuracy IR hand tracking device

LEAP MOTION

- \circ Two infrared cameras
- Three IR LEDs

The Leap transmits video data to the Leap Motion software where it is analyzed

Skeletal representation of hand is by the software

LEAP MOTION

Leap Motion released in 2013

- Desktop Device
- Minimal finger tracking

Leap Orion released in 2016

- High fidelity finger tracking
- VR/Head Mounted mode
- Windows only

Leap C 4.0 released in 2018

- Increased fidelity
- Streamlined C API
- Language wrappers deprecated

LEAP MOTION

Past Leap Projects

GECO MIDI

This app converts basic hand gestures into MIDI data.

- Desktop mode
- Controller

Lyra VR

Lyra is a VR experience in which different interactable objects can be used and manipulated to create music and sound.

- Head mounted mode
- Interaction system

[8]

Data Gloves

Peripherals for tracking hand posture and movement

EARLY DATA GLOVE SYSTEMS

Nintendo Powerglove

- o **1989**
- Primitive flex sensors, ultrasonic sensors
- Measures fingerbend, roll of hand

Lady's Glove

- 1991 Laetitia Sonami
- Flex sensors, Hall sensors, accelerometers, pressure pads
- Measures a range of gesture based variables
- Relates gesture to sound

DATA GLOVE SYSTEMS

[9]

Mi.Mu Gloves

- 2010 Imogen Heap
- Flex sensors, Absolute Orientation Sensor
- Consumer production interface

Musical Interaction with Hand Posture and Orientation: A Toolbox of Gestural Control Mechanisms

Alto Glove

- Seth Thorn
- Flex sensors, FSRs, Absolute Orientation sensor
- Measures gesture in the context of violin performance
- Instrumental vs Free Hand

IR GLOVELESS SYSTEMS

Digits

- o 2012 Microsoft
- Two IR cameras
- Developed for gesture control of smart phones, games, etc.
- Posture measurement

Leimu

- 2016 Brown, D., Renney, N., Stark, A., Nash, C. and Mitchell, T.
- Wrist mounted Leap Motion controller, Inertial Measurement Unit
- Proof of concept for Leap Motion as a data glove-like device

WHAT IS THE LEAPMAX PROJECT?

A gestural interaction system developed for Max and Leap Motion which focuses on measuring, calculating, and mapping hand gesture and posture.

LeapMax API

Protocol for linking the Leap Motion service to Max.

LeapMax Library

A library of Max abstractions which extract more complex gesture and posture data from Leap data.

LeapMax Gestural Interaction System

3

A DMI which is a use case for the LeapMax API and Library.

LeapMax API

Communicating between Max and Leap

Leap Data Management

- 1. Image data is passed from the Leap device to the Leap service
- 2. Hand tracking data is calculated by the Leap service
- Data is passed to programs connected to the Leap service through an API

Previous Max APIs

Start 1. Plug the Labp davids via USB 2. Lawich. Leap approximit ask expension Deak Pame Start Tamin Rand Inger path tail Tame, and								visualizer	Data out trame_st trame hand(s) finger(psim bail trame_ar	nut order: ef				
-	Coll harry	Coll hand	a col finge	ni col pain	a col bals	•)								
Frame		hands		Hands	Prome M	Incara		Balls band if	tama iri	position		Finge	ers position	-1.
3357258	5407598	2		11 7	3307268 3357268	3		11 7	3357268	-20.67	178.11 134.33	38.42 33.39	74.56 71.05	
Pains		position			direction			velocity			normal			
hand id	fizme id	x	¥	z	x	y .	z	x	¥.	z	×	У	z	
1	3357268 3357268	-42.32	203.02	47.42 53.40	-0.28	0.13	0.89	126.91 -21.67	-423.49 -70.25	-299.86 265.50	0.21	-0.90	0.11	
Fingers			position	12	12 1	direction	101	12	velocity	1933	22	2222	1.000	1000
	11	3357268	23.80	204.03	.38.75	0.18	0.35	0.92	5.04	.15.95	21.80	16.91	14.25	0
10	11	3357268	17.00	224.30	-13.04	-0.62	0.20	0.74	-6.40	9.42	4.73	19.19	00.20	0
4	11	3357268	-73.28	141.30	11.08	-0.18	0.27	0.95	-84.50	99.75	22.20	13.15	27.40	0
17	7	3357268	144.22	170.47	-32.24	0.62	0.28	0.81	15.63	7.72	5.89	18.00	77.56	0
	7	3357268	163.65	153.17	-29.00	0.39	0.20	0.90	14.81	7.14	4.07	15.23	66.47	-
4	7	3357268	116 30	154 11	4.83	0.09	0.27	0.63	10.60	1.94	0.45	10.43	63.68	· ·
				- and the			0.10			- Card		~.0		· · · ·

aka.leapmotion by Masayuki Akamatsu

- Released in 2013
- Uses the Leap C++ API for v. 0.7.0
- No finger typing
- Communicates data through labeled Max messages

leapmotion-for-max by Jules Francoise

- Released in 2014, updated for Orion
- Uses the Leap C++ API for v. 3.*
- $\circ \quad \text{Hand and finger identification} \\$
- Communicates data through labeled Max messages

- Both APIs are now deprecated
- Develop an updated and more efficient Max API for Leap

CONSIDERATIONS AND IMPROVEMENTS

Problem:

The leapmotion-for-max object outputs 38 messages per frame per value being tracked.

This means if there are five values being tracked, Max must handle 190 messages.

Problem:

The current naming conventions and hierarchical message structure make writing an abstraction object to access a single value difficult.

Solution:

Use Max Dictionaries to store data.

Develop a modular naming system for easy data access.

MAX DICTIONARIES

What are Dictionaries?

- Use key-value pairs to store structured data.
- Max dictionaries are global.

Why Dictionaries?

- Dictionaries pass by reference rather than by value.
- Data is stored and retrieved from a single place in memory.
- Data storage and retrieval can be separated and abstracted

n = number of values

DICTIONARIES: NAMING CONVENTION

Goals: Consistency and Modularity

Follows the Leap Motion C API data structure: Global, Hand, Finger, Bone

Example Variable Names:

- frameid
- rightpalmposition
- rightindextipposition
- leftpinkydistalrotation

ORIENTATION MANAGEMENT

In order to be used in Head Mounted mode, the orientation of the Leap device needs to be tracked.

The LeapMax object accepts a rotation quaternion, then transforms the data returned by the Leap Motion into Global space.

THE LEAPMAX OBJECT

Start/Stop Leap Orientation Quaternion	
qmetro 10 0. 0. 0.	2
dictionary leap	
frameid: 6962	n
timestamp: 803683760138	4
hands: 0	
isRight: O	
isLeft: 0	
leftid: 6	
leftpinchdistance: 28.646328	
leftgrabangle: 2.276631	
leftpinchstrength: 0.640221	
leftgrabstrength: 1.	
leftarmprevjoint: 173.86 2.41 329.63	
leftarmnextjoint: 193.90 -83.87 90.78	
leftarmwidth: 60.539734	
leftarmrotation: 20.03 -86.28 -238.85	
leftpalmposition: 210.21 -118.93 30.23	
leftpalmvelocity: 487.10 982.56 280.89	
leftpalmnormal: -0.76 0.36 -0.54	
leftpalmwidth: 85.848343	
leftpalmdirection: 0.37 -0.44 -0.82	

The result is the leapmax object:

- Max C external that interfaces with the Leap service
- Accepts a metro bang in the first inlet to cue frame collection
- Transforms the Leap data corresponding to an orientation quaternion
- Outputs the transformed data to a named Max dictionary

LeapMax Library

Interpreting Leap Data

LEAPMAX LIBARY

A series of abstractions for extracting more complex gesture data from data provided by the Leap Motion

Design goals for the LeapMax library include:

- Modularity
- Reusability
- Flexibility

ANATOMY OF A LEAP OBJECT

ENCAPSULATION AND MODULARITY

 Max object arguments are used to pass user specified data to encapsulated Leap library objects

CAPTURING POSTURE

Goals: Simplistic yet effective

Digits: Linear relationship between finger joint angles

Measuring Posture

- List of 5 values
- Fingerbend (0-1) for each finger

Split into two objects: leap.posture leap.getposture

Non-discrete measurement

• Posture similarity value (0-1)

LeapMax Library Demo

LeapMax Gestural Interaction System

Building a use-case

HARDWARE

Design Goals:

- **Low Cost:** The starting cost of this system is around \$150
- **Streamlined:** Only two sensors in use. High reliability and ease of use.

Leap Motion

BNO055 IMU

Teensy LC

Glasses

x2 15' USB extension cables

FREE HANDED GESTURE

Claude Cadoz describes several categorized functions of hand gesture:

• Ergotic Function

"material action, modification and transformation of the environment."

• Epistemic Function

Feedback and the reaction that is received from the environment. Texture, reactive force, vibration.

• Semiotic Function

Free Handed Gesture

Instrumental

Gesture

- The communicative intent of a gesture. "the only function associated to gesture in the sense of free- or empty-handed gestures sign-language, natural gesture, gesticulation, pantomime, etc"
- Free handed gesture systems must be complex yet intuitive
- Feedback must be incorporated into the output produced

MAPPING GESTURE TO SOUND

Gestures are parameterized and used to control parameters of live audio generation systems.

Types of Synthesis: Granular and FM

Parameterized reverb and delay

Conceptual explorations

- How can you build an interactive environment from sound?
- How can stereo audio be associated to gestural space?
- Can you 'grab' and 'throw' sound?
- How can sound describe energy?

LeapMax Peformance Demo

Resources

- [1] <u>https://giphy.com/gifs/leap-motion-KfbhbuWbE6gyk</u>
- [2] <u>http://www.strangecompany.org/leap-motion-orion-yes-the-leap-works-now/</u>
- [3] <u>http://akamatsu.org/aka/max/objects/</u>
- [4] <u>https://www.julesfrancoise.com/leapmotion</u>
- [5] http://www.iainhetherington.co.uk/wp-content/uploads/2017/07/20170714 MaxMSP SciFiEngineMessAbout GIF.gif
- [6] <u>https://developer-archive.leapmotion.com/gallery/lyra-vr</u>
- [7] <u>http://designingsound.org/2015/09/16/beyond-the-mouse-and-keyboard-the-role-of-touch-and-motion-in-sound-design/</u>
- [8] <u>https://www.leapmotion.com/technology/</u>
- [9] <u>https://mimugloves.com/tech/</u>
- [10] <u>https://en.wikipedia.org/wiki/Power_Glove</u>
- [11] <u>https://www.seththorn.net/altoglove</u>
- [12] <u>https://www.microsoft.com/en-us/research/project/digits/</u>
- [13] https://www.amazon.com/Adafruit-Absolute-Orientation-Fusion-Breakout/dp/B017PEIGIG
- [14] <u>https://www.amazon.com/gp/product/B017O0W5VA/ref=oh aui detailpage o08 s00?ie=UTF8&psc=1</u>
- [15] <u>http://sonami.net/ladys-glove/</u>
- [16]

https://www.semanticscholar.org/paper/Leimu-%3A-Gloveless-Music-Interaction-Using-a-Wrist-Brown/776f90968b529b8d6237dfb 558e04818183753c0

- [17] <u>http://dsky9.com/rift/vr-tech-6dof/</u>
- [18] <u>http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/</u>