Team Members

r r Kirsten Bauman, Ryan Black, George Jones, Excel Ortega,
ce and Zachary Schmalz

Spring 2018 Gaming Capstone - Al Driving, Yoshihiro Kobayashi

About the Project

For our project, we aimed to create a virtual environment where a simulated self-driving car can
drive through. This can result into the development of a more robust system because different
environments during the day and/or night can be simulated with different weather conditions such as
dust, rain, and snow on the road. Situations that are otherwise dangerous in the real world such as a kid
suddenly walking across a road, other cars driving recklessly, and car parts malfunctioning can be '
simulated as well. ’

In addition, many iterations of the simulation can be ran and huge amounts of data can be
generated and analyzed with no additional cost. This is important because creating these scenarios in the
real world can accumulate into a huge expense and can sometimes be not feasible.

Game Modes "ﬁ-\' TensorFlow

® Package Delivery mode serves as a tutorial ® Racing mode is used to train and test Al driving

to get players acquainted with the control models. The player is able to record racing

system and gameplay of the simulator. The data, train the Al using the data, and then race @ SIMPLE WORLD amazon

task is to deliver packages to residences. their generated Al. webservices
Objectives .

J Al Implementation

® To train a simulated self-driving car on a .

virtual environment and develop an Al Data Logglng & Shaders

model. Level The data given to the Al is generated by a user driving around an

. | Desi environment and saving their input in a comma-separated file (csv) file. This input

® To create avirtual vehicle esign consists of images from three camera views in the left, center and right of the car,

driven by the Al model on
a virtual environment
to race against.

Package Delivery the throttle, reverse, steering, and speed. Each image is a combination of 3 shaders
The first map is a large mapped to the red channel (depth shader), green channel (segment shader) and

neighborhood with a daytime the blue channel (grayscale).

setting. This map is easier to

navigate than the second delivery

map. The second map is a city at night.

There are many stop lights and differing

traffic interactions in this map. Both maps could
eventually be used to train the Al for more complex
Ssituations.

Racing Training

We also created three racing loops to train and test the first Al Once the | . d driving | " . tad. that data is th
models. The first racing loop is a simple Nascar style track nce the Image data and ariving 10gs nave been createa, that data IS then

with four lanes and only left turns. The second map is slightly used to build and train a convolutional neural network that performs the automatic
more complicated with varying straights and curves, and a driving. A convolutional neural network (CNN) is a black box that receives input and
right turn. The final racing map follows a complicated pattern Spits out an output. In our case, we input the generated camera images and the
and the course is littered with obstacles that the Al can be driving log data, the black box performs image and data augmentations such as
trained to avoid. cropping, zoom, rotation, axis flipping, brightness, saturation, and outputs a
steering angle prediction for the car.

The CNN model generation code is written in Python using Keras, a high-level
neural network APl running on top of Tensorflow, a low-level computational
framework for building machine learning models. Using Keras, we can generate
models from the recorded data and then use those models to predict steering
angles for the autonomous car.

Server Side

In our project, a python server running the trained keras model is established
via a socket that Unity can connect to. A live camera feed and driving log attached
to the autonomous car is sent to the CNN that predicts what the current steering
angle should be.

o~ GAS BSU Ergineoring

'A St u d io Arizona State University

