

rAIcer: Self Driving AI Simulation Environment

Kirsten Bauman, Ryan Black, George Cooper Jones, Excel Ortega, Zachary Schmalz,
Yoshihiro Kobayashi

Arizona State University

University Drive and Mill Avenue, Tempe, AZ 85281, USA

kebauma1@asu.edu, ryan.black@ryblack.com, gcjones1@asu.edu, excel.ortega@gmail.com, zacharyschmalz@gmail.com, ykobaya@asu.edu

ABSTRACT
The goal of this project was to develop a simulated
virtual environment for training a self-driving game AI.
The simulation can recreate a multitude of different
environmental factors including different times of day,
weather conditions, etc. The integrated data capture
system uses custom depth, segment, and grayscale
shaders to minimize file size while optimizing the
quality of captured training data. AI models are trained
from the data using the TensorFlow deep learning
model running on the Nvidia CUDA parallel computing
platform. Once an AI model is created, it can deployed
and raced against by the user.

Author Keywords
Artificial Intelligence (AI), Neural Network, Self-Driving
Car, Convolutional Neural Network (CNN)

INTRODUCTION
Virtual simulations are often used to augment the real
life testing of self-driving AI due to the efficiency and
low cost of running high quality recreations of realistic
events. This can result into the development of a more
robust AI system because different environments such
as day and night as well as different weather conditions
such as dust, rain, and snow can be simulated.
Situations that are otherwise dangerous in the real
world such as a child suddenly walking across a road,
other cars driving recklessly, and car parts
malfunctioning can be simulated as well. In addition,
many iterations of the simulation can be run and huge
amounts of data can be generated and analyzed with
no additional cost. This is important because creating
these scenarios in the real world can accumulate to a
huge expense and is often times not feasible.

BACKGROUND
The following is a description of the hardware
software/technologies used during the project.

Unity 2017.3
Unity is a popular multi platform game engine
known for its ease of use and streamlined workflow.
The game makes heavy use of the Simple World
unity package that provided the environment assets
such as roads, vehicles, and buildings.

Keras 2.1.4
Keras is an open source, high-level neural network
API. Written in Python, it runs on top of Tensorflow
and is designed for a user friendly approach to
building and experimenting with deep neural
networks. Keras was used for building the
Convolutional Neural Network (CNN) that powers
the autonomous driving vehicle.

Python 3.6
Using the Anaconda environment, the CNN
modeling (using the Keras framework), training,
and driving scripts were written in Python.

Logitech Driving Force GT
While the game supports keyboard and mouse
input, the Driving Force GT steering wheel provides
more accurate real-world driving data for logging,
such as steering angle, acceleration, and braking.

SYSTEM IMPLEMENTATION

Data Logging
The user generates data while driving around the
environment that is logged by the game. The data
is arranged as follows: a reference to the image file
from the left camera, a reference to the image file

from the center camera, a reference to the image
file from the right camera, the throttle, reverse,
steering angle, and speed. Each of the input is
saved into a .csv file per line per frame.

Shader
We wanted to develop a data capture system that
would maximize the amount of information that
could be stored in each frame of data. To
accomplish this, the left, center, and right front
facing cameras on the vehicle render the scene
using three different shader methods. The first
method uses a z buffer to create a depth map
image of the scene. This gives the AI information
regarding the distance of certain objects from the
car. The second shader method is a segmentation
view of the scene. This recreates the images output
by the SegNet neural network by drawing each
object a specific solid color based on the type of
object it is (ie. building, road, sign, etc.). The final
shader is the standard lighting shader which shows
a regular view of the scene.

These three shaded images are then downsampled
from four channel images (RGBA) into single
channel images which are then combined into the
red, green, and blue channels of the final output
image. Finally, the image is drawn to a 128x128
render target which is exported to a <10kB PNG file
every frame.

+ +

=

Model Generation and Training
With the data and images generated, it is time to
start generating the AI model and training. If the
dataset of steering angles is loaded into a
histogram, we can see that the steering angles
have a strong bias towards driving straight, i.e.

steering angle ~ 0. If this bias is not accounted for
during the training, it will be reflected in the final
model, yielding poor results.

To account for this bias, the current literature on
image deep learning and industry standard is to
perform a series of image augmentations and
manipulations. Some image augmentation
functions include zoom, rotation, horizontal and
vertical shift, horizontal flip, channel shift, crop and
resize, and brightness shifting, all of which Keras
provides in its API. These image augmentations
allow the model an opportunity to learn how to
recover from slight deviations from the norm
behavior. The original, unedited images are never
sent to the neural network. As was learned the hard
way, 3 cameras on the vehicle, front, center, and
right, are absolutely necessary for model
generation. The side cameras provide recovery
paths for when the vehicle is slightly off the optimal
driving path, otherwise the model does not know to
stay on the optimal path and will crash.

With the image dataset augmented, we then begin
building the Convolutional Neural Network model
with Keras. CNN’s are especially good at
performing object recognition. The basic idea of a
CNN is that an image is inputted into a trained
model designed to recognize image patterns and
elements, and give an output based on the image,
such as an image caption, or in this case, a
steering angle for the autonomous vehicle.

The CNN architecture used in this project is based
on the architecture described in NVIDIA’s
groundbreaking paper on a similar topic, ​End to
End Learning for Self-Driving Cars​, and Keras
allows implementation of this structure with just a
few lines of code. The models created for this
project are mainly based on users driving laps
around a track using the GT steering wheel; each
model was trained on approximately 30,000 images
(10,000 from each camera), and the entire training
process takes approximately 3-5 hours to complete
depending on the number of images, and the
number of “epochs” or model instances. At the end
of the training, it can be seen how the forward
driving bias is accounted for and normalized in the
model.

Model Networking
With the model generated, that model is then used
to predict steering angles for an autonomous car.
The model is loaded onto a python server that
establishes a socket that networking scripts in Unity
can connect to on any IP address. With the socket
established, Unity sends an image stream from the
center camera of the car as well as telemetry data
such as current steering angle, throttle, and speed.
Using this data, Keras inputs this data to the model
and returns a steering angle and throttle value to
the autonomous car control scripts in Unity.

CASE STUDY
Udacity, an online educational website offering
courses on computer science and mathematics
courses. In 2017, Udacity launched an open source
project for building a self driving car. Their process
of data gathering, model generation and training,
and networking is essentially the same as has been
described in this paper, albeit a lot more
streamlined and polished. In fact, this project has
been a valuable resource for replicating the AI
systems and CNN generation and training process.

CONCLUSION and FUTURE WORK
This project is a successful implementation of an
efficient simulation environment that allows for
streamlined training and testing of self-driving AI
models. The game’s internal data logging makes
recording training data as simple as playing the
game and once the data is created, it can be sent
to the AI server for training. Testing confirmed that
the combined shader method used for data capture
in this system greatly improved the AI’s ability to
interpret a scene over a standard image capture
method. Data optimizations also kept training data
small and manageable without reducing image
quality.

This project is not only a proof of concept for a self
driving car simulation, but also a demonstration of
an agile AI that can be deployed to learn how to
play almost any type of game. Further development
of this project could extend beyond driving and
demonstrate secondary applications of the AI’s
game learning capability. Additionally, more
realistic data collection methods such as simulated
lidar and a live SegNet AI implementation could
improve the realism of training data collected.

REFERENCES

1. Badrinarayanan, V., Kendall, A. and Cipolla,
R. (2017). SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image
Segmentation. ​IEEE Transactions on
Pattern Analysis and Machine Intelligence​,

2. [online] 39(12), pp.2481-2495. Available at:
http://mi.eng.cam.ac.uk/projects/segnet/#pu
blication​.

3. Raval, S. (2017). ​How to Simulate a

Self-Driving Car​. [video] Available at:
https://www.youtube.com/watch?v=EaY5Qi
ZwSP4 [Accessed 24 Feb. 2018].

4. NVIDIA (2016). ​End to End Learning for Self
Driving Cars. ​Available at:
https://devblogs.nvidia.com/deep-learning-s
elf-driving-cars/​ [Accessed January, 2018]

5. Udacity (2017) ​An Open source Self Driving
Car​. Available at
https://github.com/udacity/self-driving-car

http://mi.eng.cam.ac.uk/projects/segnet/#publication
http://mi.eng.cam.ac.uk/projects/segnet/#publication
https://devblogs.nvidia.com/deep-learning-self-driving-cars/
https://devblogs.nvidia.com/deep-learning-self-driving-cars/
https://github.com/udacity/self-driving-car

