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ABSTRACT 
The goal of this project was to develop a simulated          
virtual environment for training a self-driving game AI.        
The simulation can recreate a multitude of different        
environmental factors including different times of day,       
weather conditions, etc. The integrated data capture       
system uses custom depth, segment, and grayscale       
shaders to minimize file size while optimizing the        
quality of captured training data. AI models are trained         
from the data using the TensorFlow deep learning        
model running on the Nvidia CUDA parallel computing        
platform. Once an AI model is created, it can deployed          
and raced against by the user. 
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INTRODUCTION 
Virtual simulations are often used to augment the real         
life testing of self-driving AI due to the efficiency and          
low cost of running high quality recreations of realistic         
events. This can result into the development of a more          
robust AI system because different environments such       
as day and night as well as different weather conditions          
such as dust, rain, and snow can be simulated.         
Situations that are otherwise dangerous in the real        
world such as a child suddenly walking across a road,          
other cars driving recklessly, and car parts       
malfunctioning can be simulated as well. In addition,        
many iterations of the simulation can be run and huge          
amounts of data can be generated and analyzed with         
no additional cost. This is important because creating        
these scenarios in the real world can accumulate to a          
huge expense and is often times not feasible. 
 

BACKGROUND 
The following is a description of the hardware        
software/technologies used during the project. 
 
Unity 2017.3 
Unity is a popular multi platform game engine        
known for its ease of use and streamlined workflow.         
The game makes heavy use of the Simple World         
unity package that provided the environment assets       
such as roads, vehicles, and buildings. 
 
Keras 2.1.4 
Keras is an open source, high-level neural network        
API. Written in Python, it runs on top of Tensorflow          
and is designed for a user friendly approach to         
building and experimenting with deep neural      
networks. Keras was used for building the       
Convolutional Neural Network (CNN) that powers      
the autonomous driving vehicle. 
 
Python 3.6 
Using the Anaconda environment, the CNN      
modeling (using the Keras framework), training,      
and driving scripts were written in Python. 
 
Logitech Driving Force GT 
While the game supports keyboard and mouse       
input, the Driving Force GT steering wheel provides        
more accurate real-world driving data for logging,       
such as steering angle, acceleration, and braking. 
 
SYSTEM IMPLEMENTATION 
 
Data Logging 
The user generates data while driving around the        
environment that is logged by the game. The data         
is arranged as follows: a reference to the image file          
from the left camera, a reference to the image file          



 

from the center camera, a reference to the image         
file from the right camera, the throttle, reverse,        
steering angle, and speed. Each of the input is         
saved into a .csv file per line per frame. 
 
Shader 
We wanted to develop a data capture system that         
would maximize the amount of information that       
could be stored in each frame of data. To         
accomplish this, the left, center, and right front        
facing cameras on the vehicle render the scene        
using three different shader methods. The first       
method uses a z buffer to create a depth map          
image of the scene. This gives the AI information         
regarding the distance of certain objects from the        
car. The second shader method is a segmentation        
view of the scene. This recreates the images output         
by the SegNet neural network by drawing each        
object a specific solid color based on the type of          
object it is (ie. building, road, sign, etc.). The final          
shader is the standard lighting shader which shows        
a regular view of the scene.  
 
These three shaded images are then downsampled       
from four channel images (RGBA) into single       
channel images which are then combined into the        
red, green, and blue channels of the final output         
image. Finally, the image is drawn to a 128x128         
render target which is exported to a <10kB PNG file          
every frame. 
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Model Generation and Training 
With the data and images generated, it is time to          
start generating the AI model and training. If the         
dataset of steering angles is loaded into a        
histogram, we can see that the steering angles        
have a strong bias towards driving straight, i.e.        

steering angle ~ 0. If this bias is not accounted for           
during the training, it will be reflected in the final          
model, yielding poor results. 

 
To account for this bias, the current literature on         
image deep learning and industry standard is to        
perform a series of image augmentations and       
manipulations. Some image augmentation    
functions include zoom, rotation, horizontal and      
vertical shift, horizontal flip, channel shift, crop and        
resize, and brightness shifting, all of which Keras        
provides in its API. These image augmentations       
allow the model an opportunity to learn how to         
recover from slight deviations from the norm       
behavior. The original, unedited images are never       
sent to the neural network. As was learned the hard          
way, 3 cameras on the vehicle, front, center, and         
right, are absolutely necessary for model      
generation. The side cameras provide recovery      
paths for when the vehicle is slightly off the optimal          
driving path, otherwise the model does not know to         
stay on the optimal path and will crash. 
 
With the image dataset augmented, we then begin        
building the Convolutional Neural Network model      
with Keras. CNN’s are especially good at       
performing object recognition. The basic idea of a        
CNN is that an image is inputted into a trained          
model designed to recognize image patterns and       
elements, and give an output based on the image,         
such as an image caption, or in this case, a          
steering angle for the autonomous vehicle.  
 
 

 



 

The CNN architecture used in this project is based         
on the architecture described in NVIDIA’s      
groundbreaking paper on a similar topic, ​End to        
End Learning for Self-Driving Cars​, and Keras       
allows implementation of this structure with just a        
few lines of code. The models created for this         
project are mainly based on users driving laps        
around a track using the GT steering wheel; each         
model was trained on approximately 30,000 images       
(10,000 from each camera), and the entire training        
process takes approximately 3-5 hours to complete       
depending on the number of images, and the        
number of “epochs” or model instances. At the end         
of the training, it can be seen how the forward          
driving bias is accounted for and normalized in the         
model. 

 
Model Networking 
With the model generated, that model is then used         
to predict steering angles for an autonomous car.        
The model is loaded onto a python server that         
establishes a socket that networking scripts in Unity        
can connect to on any IP address. With the socket          
established, Unity sends an image stream from the        
center camera of the car as well as telemetry data          
such as current steering angle, throttle, and speed.        
Using this data, Keras inputs this data to the model          
and returns a steering angle and throttle value to         
the autonomous car control scripts in Unity. 

 
CASE STUDY 
Udacity, an online educational website offering 
courses on computer science and mathematics 
courses. In 2017, Udacity launched an open source 
project for building a self driving car. Their process 
of data gathering, model generation and training, 
and networking is essentially the same as has been 
described in this paper, albeit a lot more 
streamlined and polished. In fact, this project has 
been a valuable resource for replicating the AI 
systems and CNN generation and training process. 
 
CONCLUSION and FUTURE WORK 
This project is a successful implementation of an        
efficient simulation environment that allows for      
streamlined training and testing of self-driving AI       
models. The game’s internal data logging makes       
recording training data as simple as playing the        
game and once the data is created, it can be sent           
to the AI server for training. Testing confirmed that         
the combined shader method used for data capture        
in this system greatly improved the AI’s ability to         
interpret a scene over a standard image capture        
method. Data optimizations also kept training data       
small and manageable without reducing image      
quality. 
 
This project is not only a proof of concept for a self            
driving car simulation, but also a demonstration of        
an agile AI that can be deployed to learn how to           
play almost any type of game. Further development        
of this project could extend beyond driving and        
demonstrate secondary applications of the AI’s      
game learning capability. Additionally, more     
realistic data collection methods such as simulated       
lidar and a live SegNet AI implementation could        
improve the realism of training data collected. 
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