
LeapMax: Gestural Interaction System

George Cooper Jones
Arts, Media, and Engineering

Arizona State University
gcjones1@asu.edu

ABSTRACT

The LeapMax Gestural Interaction System is a project
which utilizes the Leap Motion controller and visual
programming language Max to extract complex and accurate
skeletal hand tracking data from a performer in a global 3-D
context. The goal of this project was to develop a simple and
efficient architecture for designing dynamic and compelling
digital gestural interfaces. At the core of this work is a Max
external object for extracting data from the Leap Motion service.
From this, a library for determining more complex gesture and
posture information was generated and refined. To demonstrate
the use of this system in a performance context, an experimental
musical instrument was designed in which the Leap is combined
with an absolute orientation sensor and mounted on the head of a
performer.

1. INTRODUCTION

1.1 Glove Based Interactive Hand Tracking Systems
The proliferation of inexpensive and highly accurate

wearable sensing technologies has resulted in the widespread
development of wearable devices and peripherals in the fields of
human-computer interaction, digital musical instrument (DMI)
design, and beyond. These devices can be used to develop
intuitive and highly dynamic interaction methods by developing
relationships between the physical state of the subject being
measured and the values output by a sensor or sensors.
Measuring the human hand is of particular interest in this respect
due to the complexity of movement and expressivity that it
possesses. Hands are the means of interaction for almost all
musical instruments, so it stands to reason that a lot can be
gained from tracking and mapping their gesture and posture.

One of the earliest examples of hand tracking
technologies is the Nintendo Power Glove. The Power Glove
was a peripheral game controller release in 1989 for the
Nintendo Entertainment System. It allowed for basic game
interaction and control based on the bend of the fingers, the
hand’s orientation in space, and an assortment of buttons placed
on the forearm of the glove [17]. Although it was not very
successful, it represents one of the first examples of a data glove
system. A later and far more sophisticated example of a data
glove system is Laetitia Sonami’s Lady’s Glove. This device is a
gestural musical interface debuted in 1991 that, throughout its
evolution over 25 years, used a variety of hall effect sensors,
ultrasonic sensors, embedded switches, bend sensors, and
pressure pads to detect movement and gesture and transform it
into sound [11]. Other examples of more modern data glove
systems include the Mi.Mu glove system and the Alto.Glove
system by Seth Thorn [4, 15].

The technology described in this report is not meant to
be a competitor to the current methodologies of glove and
sensor-based hand tracking technologies, but rather it is meant as
a complementary approach to capturing posture and gesture data
from hands which presents its own advantages and
disadvantages when used in different contexts. These advantages
and disadvantages will be discussed later in the report.

1.2 Leap Motion

The Leap Motion is a small rectangular device which
uses infrared cameras to calculate and track the positions and
postures of hands in front of the sensor. It has been used
extensively in the field of digital instrument design and human
computer interaction. The Leap Motion was first released in
2013 and has since gone through several iterations of
development which have each shaped and changed its goals,
purpose, and uses. When it was first released, the Leap was used
mainly as a desktop device which could detect the position and
rotation of a hand as well as gather limited finger measurements.
This system was very good at tracking the orientation and
movement of the whole hand, but limitations in the software’s
ability to track fingers meant that minute motions and posture
were almost impossible to accurately measure [1]. Early gestural
music software for the Leap includes Geco Midi [7], a software
for converting hand positions and rotations into midi values for
parameter control, AirHarp [2], a digital harp controlled by the
leap, and Flocking [6], a musical simulation of a school of fish
that react to the interactor’s hand.

In 2016, the Leap Motion team released the Orion
software update which truly revolutionized what the Leap device
was capable of. This software focused on integrating the Leap
Motion into virtual reality setups by adding new software
configurations for a head-mounted setup and vastly improving
the latency, reliability, and accuracy of the device. With this
update, the Leap Motion now has two modes - one for a desktop
Leap setup, and one for a head mounted Leap setup. Since then,
the development path has focused heavily on improving the
VR/AR paradigm, with the goal of replacing standard VR
controllers with a more natural and gesturally interactive system.

In early 2018, the Leap 4.0 software was released,
featuring a new streamlined C API and boasting better fidelity
and consistency than ever before. The Leap C API has been
released without any supporting language wrappers, with the
hope that language wrappers will be developed by the
community.

The Leap Motion, and other IR technologies like it,
offer unique opportunities in the field of DMI design and
gestural interaction. Whereas previous systems that measure
hand gestures and movements have required the use of physical
sensors to function as a layer of abstraction between the actual
positioning of the hand and the data collected, the Leap Motion

has the unique capability of allowing direct access to the exact
skeletal positioning of the human hand. No longer is the hand
simply an actuator for some other dynamic system - be that a
physical instrument, object, or sensor. Instead of being the
method of control, the hands themselves can become the system
to be measured.

2. BACKGROUND

2.1 Max + Leap Motion
Max (Max/MSP) is a visual programming language that

puts an emphasis on music and multimedia and is widely used in
the spheres of experimental sound, DMI design, installation art,
and others. Because of its modularity and graphical user
interface, it has been called the “lingua franca for practitioners of
computer-based live performance” [18].

Despite the close relationship the Leap Motion has had
with music and sound, an officially supported API for
communicating between the Leap Motion and Max has never
been developed. There are, however, two popular custom built
APIs for Max and Leap: the aka.leapmotion object which was
released in 2013 by Masayuki Akamatsu, and
leapmotion-for-max which was released in 2014 by Jules
Francoise [3, 13].

Akamatsu’s object was developed very early on in the
Leap’s life cycle and, despite being heavily used during that
time, it is now deprecated and no longer functional with later
iterations of the Leap software. During this period of the Leap’s
development, the sensor did not label finger types or tell left
hand from right, which became a frustration for many developers
using the Leap with Max [9, 10]. Luckily, this is a problem that
has been resolved by later iterations of the software, and the
Leap service now identifies hand and finger types natively.

Francoise’s object has received consistent updates
which allow it to be functional with the Leap software up to
version 3.0+. This object uses the deprecated C++ Leap API,
however, and thus no longer functions with the Leap C 4.0
software.

One of the goals of the LeapMax project is to develop
an updated Max API for communicating with the new Leap
service protocol as well as create a library of objects for
extracting more complex gestural data from the Leap Motion.
The hope of the author is that by developing an efficient and
straightforward Max protocol for the Leap, this technology will
be made accessible to new groups of developers, musicians, and
artists.

2.2 LeapMax and The VR Hand Tracking Paradigm

Along with developing a Max API and library for the
Leap, another goal of this project is to demonstrate a use case of
the system as a way to unite the head-mounted Leap VR concept
with the methodologies used by data glove systems. Many
virtual reality projects explore the applications of the Leap in
audio design such as LyraVR, an interaction system that allows
the user to create sounds and music using a variety of virtual
objects [14]. Most of these systems focus on using the Leap’s
high fidelity tracking to fluidly interact with a simulated 3D
environment which in turn produces sound. The LeapMax
project removes the visual component of the VR experience,

focusing instead on measuring the user’s posture and gesture to
form a unique gestural space within the context of the
interactor’s physical surroundings.

3. THE LEAPMAX API

The first portion of the LeapMax project was
developing an updated and highly efficient Max API for
communicating with the Leap service. This was done by
developing a custom Max C external object which utilizes a
combination of the Leap 4.0 C library and custom code to
transform Leap data and send it to Max for use. The end result is
a Max object called “leapmax” which accepts into its first inlet a
bang which triggers the collection of a frame of data from the
Leap service and saves it to a Max dictionary.

3.1 Previous API Designs and Considerations

The goal of this project is not only to update current
Max APIs, but to improve the efficiency and cohesion of the
system as a whole. This began with an examination of the
previous API designs and their successes and shortcomings.
Because of the age of the aka.leapmotion Max object,
Francoise’s leapmotion-for-max object was the main focus of
this examination.

Leapmotion-for-max is a Max C external which
accesses the Leap service through the Leap C++ API and then
parses the Leap data and passes the resulting values as prefixed
messages through the outlets of the leapmotion object. Four
outlets send out gesture data, hand data, finger data, and frame
data, respectively. Within Max, desired data can then be routed
and extracted for use as necessary. Overall this system is well
designed and implemented, but there are several areas where
there is room for improvement and optimization.

One of these areas is the parsing and collection of
particular messages containing data for use. Francoise’s
leapmotion object outputs 38 Max messages per frame, and all
of these messages must be sent to every router object where a
value is parsed. This quickly becomes a bottleneck when many
values are being used by the system because of the quantity of
Max messages being sent on every frame. Another issue
presented by the current system is that the structuring of the
leapmotion message data makes programmatically selecting
certain values (ie. through a data collection abstraction)
unintuitive. The LeapMax system resolves both of these
problems by utilizing a Max feature called ‘dictionaries’.

3.2 Max Dictionaries

Max version 6 saw the release of a new type of data
structure called a ‘dictionary’. Max dictionaries focus on
organizing and efficiently passing structured data in a global
scope. Rather than passing by value as standard Max messages
do, dictionaries offer the capability to pass by reference which
allows different objects to access data from the same memory
space. This makes dictionary data structures a perfect candidate
to hold data passed from the Leap because it is possible to
update one single collection of data and retrieve values from that
collection from anywhere in Max. This has the benefit of
separating the data input method and the data retrieval method
while also increasing the performance of the system as a whole.

3.3 Data Structure and Naming

In order to make the data in the Leap dictionary easily
accessible, a consistent and modular naming system was needed.
Initially, the data in the Leap dictionary was intended to be
hierarchical, with a parent dictionary representing hands,
subdictionaries within the hand dictionaries holding finger data,
and subdictionaries within the finger dictionaries holding bone
data. Although this makes sense from the standpoint of the
structure of the data being received from Leap, in practice, the
hierarchical structure ultimately added additional unnecessary
complexity when accessing values, especially from different
layers of the hierarchy.

Instead, the LeapMax API uses a single layer dictionary
with a hierarchy built into the naming system that allows
for an equally modular design which is far less complex.
The LeapMax naming system corresponds to the data
structure used by the Leap software, which structures data
in four encapsulated classes: global, hand, finger, and bone. The
global object contains two instances of the hand class, each of
which contains five instances of the finger class, each of which
contains four instances of the bone class. In the LeapMax
naming system, data is labeled corresponding to its variable
name prepended with a type at each layer of the hierarchy in
which it is encapsulated.

For example, dictionary values in the global layer are
accessed using just their variable names (e.g. ​frameid ​or
timestamp​), values in the hand layer are named by prepending
the datas’ variable names with the hand type being accessed (ie.
rightpinchdistance or ​leftgrabstrength​), values in the finger layer
are named by prepending the variable name with the hand type
and finger type (e.g. ​rightindextipposition or
leftthumbisextended​), and so on with the bone layer. The
diagram below illustrates the structure of the naming system.
This naming system not only makes accessing Leap dictionary
data in Max very straightforward but also goes a long way
toward the extensibility and modularity of the Leap library
which will be discussed later.

3.4 Coordinate Systems and Orientation Management

The Leap Motion uses a right-handed Cartesian
coordinate system measured in millimeters with an origin at the
center of the Leap sensor device, as shown in Figure 2. On its
own, the Leap returns data only with respect to this coordinate

system. In the desktop setup, the Leap device does not move and
so this data is consistent with the global frame. In order to use
the Leap in a head-mounted setup, the orientation of the device
must be tracked so that the hand positions can be transformed
accordingly in the global frame. The Leap documentation has
extensive explanations of the matrix transforms required to

convert the Leap coordinate system into global space [12].
In most VR setups both the orientation and the position

of the headset are tracked and thus this data can be passed and
used to transform the Leap data. There is no visual component of
the LeapMax system, and thus, the absolute position of the
sensor becomes irrelevant because only the relative positions of
the hands from the head of the performer need to be measured.
The Leap data only needs to be transformed by the rotation
matrix representing the orientation of the device in order to
extract useful data. Because the Leap data is only transformed by
the device’s orientation and not by position, the resulting data
exists in what could be referred to as a ‘pseudo-global’ frame of
reference. In this “pseudo-global” frame, the Leap data is
oriented properly to the global frame, but the origin of the
coordinate system is always the position of the leap sensor itself
rather than some arbitrary static point in space. This has the
added benefit of allowing the user to move/walk around in space
without affecting the output of the system.

To accommodate the transformation of the Leap data
from the Leap coordinate system to “pseudo-global” coordinate

space, additional inlets were added to the leapmax object to
accept orientation data for the Leap device in the form of a
rotation quaternion. Each position value collected from the Leap
service is then transformed by this orientation before it is output
to the dictionary. A discussion of the methods and technologies
used to track the orientation of the Leap device will be provided

later in Section 5, which outlines the LeapMax performance
system.

4. THE LEAPMAX LIBRARY

The second portion
of this project was the
development of a library of
objects that can be used to
extract data from the Leap
dictionary as well as
extrapolate more complex
data regarding posture and
gesture. Figure 4 shows a list
of all of the currently
developed objects in the leap
library. The goal here is to
make designing and
developing more complex
systems using the Leap easier
and more direct by leveraging a
modular approach to object design
which allows for a high level of reusability and extensibility.
The most basic object in the leap library is leap.get, which, when
given an argument matching the name of a dictionary key,
returns the value(s) at that key. This object can be used on its
own or encapsulated within more complex abstractions such as
leap.velocity in order to collect and manipulate certain data in
more complex ways. The following sections describe design
decisions which ensure the flexibility and modularity of the Leap
library as well as considerations regarding categorizing different
types of measurable hand gestures and postures.

4.1 Object Construction - Designing For Modularity

Modularity was an extremely important design focus of
the Leap library. This is because to make the Leap library a
highly effective tool, it was necessary to design a system in
which the chosen tracking data could be easily specified for each
instance of a Leap abstraction​—​should, for example, the
rightindextipposition be tracked, or the leftpalmposition? It was
also important to ensure that abstractions could be encapsulated
in order to develop more complex gesture systems.

4.1.1 Scheduling

Because the data capture and data selection operations
have been decoupled, capture operations need to be scheduled so
that values only update when a new frame is read from the Leap
service. This ensures that values are always up-to-date and stale
values are never passed. Like the leapmax API object, each
object in the Leap library has a left inlet which accepts a bang to
trigger accessing data from the Leap dictionary. By connecting
this to the same global metro that triggers the capture of a Leap
frame in the leapmax object, all of the leap library objects can be
synced with the global frame control.

4.1.2 Max Object Arguments

Max object arguments are additional parameters added
after the abstraction name that can be passed to the Max

abstraction and used anywhere in the encapsulated patch. Each
of the Leap library objects accepts one or more arguments to
determine what data they should measure. For example, if a user
wants to measure the speed of the right index fingertip, they
would use the leap.speed object with an argument
“rightindextipposition.” Arguments can be passed down and
used in multiple layers of encapsulation within abstractions. In
the example just given, the leap.speed abstraction passes its
argument of “rightindextipposition” to the leap.get object
encapsulated within it, and thus the values collected from
leap.get will be consistent with those specified in the leap.speed
object. Through the use of argument passing, abstractions can be
combined and expanded upon to develop more complex
calculations and gesture measurements.

4.2 Gesture Taxonomy

A useful reference for the author during the
development of the LeapMax library was the categorizations of
gesture and posture described in Mitchell, Madgwick, and
Heap’s paper ​Musical Interaction with Hand Posture and
Orientation: A Toolbox of Gestural Control Mechanisms ​[16].
Although this paper discusses these categorizations with relation
to data returned by the Mi.Mu data glove system, the same
concepts apply when using the Leap Motion. Especially valuable
are the discussions on converting continuous data to discrete
control mechanisms, and how continuous controls and discrete
controls can be used in conjunction to develop “a state-based
control system [and] to enable one-to-many gestural mappings”
[16, pp. 2]. Abstractions associated with many of the gestural
control mechanisms described by Mitchell and his coauthors are
implemented in the LeapMax library including orientation
control (leap.rotation), positional displacement (leap.difference,
leap.stepper), and posture identification (leap.posture,
leap.getposture).

Additionally, during the development of the LeapMax
library and the LeapMax performance system, the author found
it useful to consider measurable gestures in the context of several
other categorizations which are described in the next sections.
These categorizations are not intended to classify discrete
gestures, nor suggest some inherent relationship between
gestures measurements belonging to the same category. Rather,
these categories represent multiple contexts in which gesture
data can be measured, and assist in developing methodologies
for structuring the LeapMax library.

4.2.1 Data Types

The types of data extrapolated by the LeapMax library
can be divided into three main categories: position based data,
movement based data, and acceleration based data. Although
they are all interdependent, each data type is linked to gesture in
a different way. Determining which type of data is the most
symbolically linked to an output is vital in order to create
meaningful relationships between the actions taken by the user
and the output of the system.

● Position
Position data (leap.get) is based on the spatial

state of the system (ie. the hands) at a given point at
time. This data is particularly effective in developing a

sense of space within the context of the global Leap
frame.

● Movement
Movement based data (leap.velocity,

leap.grabspeed) is measured by taking the derivative of
position data with respect to time. This type of data can
be associated with the amount of energy in a gesture.

● Force
Force based data (leap.acceleration) is

measured by taking the derivative of velocity data with
respect to time. Because force is required for
acceleration, this type of data can be related to the
amount of force being exerted in a gesture.

4.2.2 Coordinate Frames
The second categorization of gesture the author found

useful while developing the Leap library was by reference to
coordinate space. Largely, gesture data exists within one of three
coordinate spaces: global coordinate space, local hand space, and
relational space.

● Global
Position data from leap.get and velocity data

from leap.velocity both represent values which
reference the global coordinate space. The global
coordinate system is static with respect to the performer
and thus any movement of the hand can be detected in
this space.

● Hand
Values extracted from leap.fingerbend and

leap.grab represent data that exists in the hand space.
This category is associated with the posture of a hand,
and because it is calculated with respect to the hand’s
coordinate system, the actual position of the hand in
space does not have an effect on these values.

● Relational
Values computed by combining and

comparing multiple data points, such as values
extracted from leap.difference and leap.distance
represent values measured in relational space.
Relational values can also be computed from
directional data collected from the leap (ie. finger
direction, palm normal, etc) by using dot or cross
products on multiple vectors. Generally, the values
being compared in these computations are actually
measured in either the global or hand coordinate
systems, but by combining them during calculation a
relational frame is established.

--
These three categories represent three contexts of

gesture measurement which, while all interdependent, can also
be manipulated and considered in isolation. For example, palm
position, which is measured in the global frame, can be
controlled independently from fingerbend, which is measured in
the hand frame. The user can bend their finger without moving
their palm and move their palm without changing the bend of
their finger. Multi-mapping using values from different

coordinate spaces is particularly effective because of the
freedom of control that this independence allows.

4.2 Measuring Posture

The LeapMax’s posture measurement system is
predicated on the simple kinematic finger model created during
the development of the Digits IR hand tracking system [5]. This
model leverages the natural interdependencies between the three
joints in each finger to infer and calculate the bend of each joint
based on a single value. In LeapMax, the single value used to
measure finger bend is the dot product calculation of the rotation
vector of the innermost bone of each finger and the normal
vector of the palm. Because this bone is perpendicular with the
palm normal when the finger is fully extended and parallel with
it when fully closed, this dot product calculation natively scales
from 0 to 1. Although this value does not represent a full
resolution description of the bend of the finger, it is accurate
enough to allow for a wide range of measured hand postures.

To create a full hand posture measurement, the
leap.posture object calculates a finger bend value for each finger
on a hand and outputs those five values as an ordered list. The
leap.getposture object accepts the posture list from the
leap.posture object and allows a posture to be saved, and then
compared to the current posture. The leap.getposture object
outputs a value from 0 to 1 corresponding to how similar the
current posture is to the saved one. Because the output of
leap.getposture is a continuous value, it can not only be used for
discrete posture selection, but also as a value associated with the
similarity of the current posture to a saved one.

5. THE LEAPMAX PERFORMANCE SYSTEM

The LeapMax performance system is a project built
using the LeapMax API and library which demonstrates an
example hardware setup as well as a use case of the LeapMax
software as a gestural DMI.

5.1 Hardware

The LeapMax performance system consists of a Leap
Motion device mounted to a pair of non-prescription glasses
using the Leap Motion VR
mount. A BNO055 absolute
orientation sensor is
attached to the top of the
Leap mount and is used to
track the Leap’s orientation
in space. This sensor is
interfaced with the
computer using a Teensy
LC microchip which sends
orientation data as Euler
values through serial.
Although there are means of
communicating orientation
and other data wirelessly,
because of the size and
complexity of the data
transmitted by the Leap
device, a wireless system

was not considered during
the development of this
project. Instead, two fifteen
foot USB cables are used to
extend the range of the headset. These wires are pinned to the
shirt of the performer to reduce the weight of the device when
worn.

A major goal for the hardware design was a reduced
cost for the system and this goal is reflected in the final
implementation of the design. At the time of writing, the Leap
Motion device with the mount costs just under $100, the
BNO055 sensor costs $35, and the Teensy LC costs $15, putting
the starting cost of this project at under $150. The minimal
amount of peripheral technologies required for use also greatly
improves the reliability and consistency of the hardware system
as a whole.

5.2 Semiotic And Free Gesture Design

Claude Cadoz argues that instrumental gesture can be
described both by its interaction with the physical environment
and by its function in the communication of information [8]. He
identifies three interdependent functions that describe this
relationship: the ergotic function, the epistemic function, and the
semiotic function. The ergotic function deals with “material
action, modification and transformation of the environment” [8,
pp. 78]. This function focuses solely on the forces applied within
a performance environment by a gesture, such as, for example,
striking or blowing an instrument. The epistemic function
focuses on the feedback and the reaction that is received from
the environment during a gesture (e.g. how hard was it to move
an object, what texture was the object, etc). Finally, there is the
semiotic function, which deals with the communicative intent of
a gesture. According to Cadoz, the semiotic function is “the only
function associated to gesture in the sense of free- or
empty-handed gestures - sign-language, natural gesture,
gesticulation, pantomime, etc” [8]

Most instruments and interfaces, by the nature of their
physical manifestation and appearance, afford particular gestures
for the performer. Buttons are meant to be pushed, strings can be
plucked or bowed. Even more complex sensor systems such as
the Mi.Mu data glove, although not immediately clear in their
control methods, give some indication of potential interaction
based on the physical device and placement of sensors.

Because LeapMax uses no physical interface or sensors,
no obvious interaction method is immediately presented, and
thus the relationship between gesture and the resulting output, be
that sound, visuals, or otherwise, becomes even more vital as a
method to relay to the user and the audience the potential
methods of interaction with the system, especially if they are not
already familiar with the it. This adds an extra layer of
complexity when designing systems that are both rich and
complex, but also intuitive and understandable.

5.3 Results, Reflections, and Future Work

Regarding the development of the Lady’s Glove,
Sonami remarks that in order to emphasize the sublime
relationship between her gestures and the sound produced, she
hid the wires within the glove in order to “make it look magical”

[11]. The completely freehanded interaction of the LeapMax
system also makes the user feel and look magical.

The design choices made while developing the
LeapMax system were validated through the data collected using
the performance system, which was found to be highly accurate
and consistent. Setting the Leap to its head mounted mode is
vital in order to retrieve good tracking data because this mode
uses a different tracking algorithm than the desktop mode. In
head mounted mode the Leap is much better at estimating the
positions of occluded fingers, although the system still has
trouble discerning when one hand occludes another.

One significant limitation of the LeapMax performance
system is its ability to track hands only when they are placed
within a 150 degree region in front of the Leap sensor which
makes some full body gestures untrackable. This limitation can
be reduced, however, by always keeping the Leap device (e.g.
the head of the user) pointed toward the hands being tracked.

Future iterations of the LeapMax performance system
could potentially include multiple Leap motion sensors working
in unison to increase the detection range of the system.
Additionally, developing a wireless solution would greatly
improve the mobility of the device and also reduce the
constriction that comes with wired systems.

In the future, the author hopes to incorporate real time
machine learning technologies such as Wekinator into the
LeapMax system to facilitate more precise and open ended
gesture detection and recognition.

6. Conclusion

The LeapMax project can be broken down into three
parts. Firstly, the LeapMax API is a Max C external which
presents an updated and optimized protocol for communicating
Leap Motion data to Max. This API is optimized through the use
of Max dictionary data structures. The LeapMax library
augments the data passed to Max by the API through a series of
modular abstractions which extrapolate more complex gestures
and postures. Finally, the LeapMax performance system
demonstrates a use case of this technology as a gestural interface
for a digital musical instrument.

The work presented in this paper represents the
technical foundations for an increased exploration of the Leap
Motion in conjunction with Max as a gestural interface. The
hope of the author is that the LeapMax project will continue be
used by other performers, developers, and researchers to further
refine and explore the capabilities of the system.

7. References

[1] E. S. Silva, J. A. O. de Abreu, J. H. P. de Almeida, V.

Teichrieb, and G. L. Ramalho, “A preliminary evaluation of
the leap motion sensor as controller of new digital musical
instruments,” ​Recife, Brasil​, 2013.

[2] “AirHarp – Leap Motion Gallery.” [Online]. Available:
https://gallery.leapmotion.com/airharp/. [Accessed:
25-Oct-2018].

[3] Akamatsu M., “aka.objects | akalogue.” [Online].
Available:http://akamatsu.org/aka/max/objects/. [Accessed:
25-Oct-2018].

[4] S. D. Thorn, “Alto. Glove: New Techniques for Augmented
Violin.” ​(NIME) ​[Online]. Available:
http://www.nime.org/proceedings/2018/nime2018_paper007
0.pdf

[5] D. Kim ​et al.​, “Digits: freehand 3D interactions anywhere
using a wrist-worn gloveless sensor,” in ​Proceedings of the
25th annual ACM symposium on User interface software
and technology​, 2012, pp. 167–176.

[6] “Flocking – Leap Motion Gallery.” [Online]. Available:
https://gallery.leapmotion.com/flocking/. [Accessed:
25-Oct-2018].

[7] “Geco MIDI – Leap Motion Gallery,” ​Leap Motion​.
[Online]. Available:
https://gallery.leapmotion.com/geco-midi/. [Accessed:
25-Oct-2018].

[8] C. Cadoz and M. M. Wanderley, ​Gesture-music​. 2000.
[9] J. Ratcliffe, “Hand motion-controlled audio mixing

interface,” ​Proc. of New Interfaces for Musical Expression
(NIME) 2014​, pp. 136–139, 2014.

[10] L. Hantrakul and K. Kaczmarek, “Implementations of the
Leap Motion in sound synthesis, effects modulation and
assistive performance tools.,” in ​ICMC​, 2014.

[11] L. Sonami, “Instruments – Lady’s Glove.” [Online].
Available: http://sonami.net/ladys-glove/. [Accessed:
25-Oct-2018].

[12] “Leap Motion C API: LeapC Guide.” [Online]. Available:
https://developer.leapmotion.com/documentation/v4/index.h
tml. [Accessed: 25-Oct-2018].

[13] J. Francoise, “Leap Motion skeletal tracking in Max.”
[Online]. Available:

https://www.julesfrancoise.com/leapmotion. [Accessed:
25-Oct-2018].

[14] “LyraVR – Music Reimagined.” [Online]. Available:
http://lyravr.com/. [Accessed: 25-Oct-2018].

[15] “Mi.Mu,” ​MI.MU​. [Online]. Available:
https://mimugloves.com. [Accessed: 25-Oct-2018].

[16] T. Mitchell, S. Madgwick, and I. Heap, “Musical Interaction
with Hand Posture and Orientation: A Toolbox of Gestural
Control Mechanisms,” p. 5.

[17] “Power Glove,” ​Wikipedia​. 08-Sep-2018.
[18] T. Place and T. Lossius, “Jamoma: A Modular Standard For

Structuring Patches In Max” p. 4.
[19] https://developer.leapmotion.com/documentation/v4/concep

ts.html
[20] http://dsky9.com/rift/vr-tech-6dof/

8. Appendix

A github repository of the LeapMax project can be found here:
https://github.com/cooperjones23/leapmax.git

A live performance using the LeapMax performance system can
be viewed here:
https://www.youtube.com/watch?v=ySnFUogCr8w&feature=yo
utu.be

